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CHAPTER 7
SEEPAGE TOMRD VELLS

VWells are used in a variety of ways to control seepage.

They may be placed-on the |andward side of water retention structures to

reduce pressure at

the |ower boundary of inpervious strata. Wells are also

used to maintain dry conditions in excavations during construction. In
addition to seepage control, well punping tests serve as an accurate neans of

field determ nation of

7-2.  Analysis of Well

perneability (see Chapter 2).

Problens. The graphical flow net technique described

in Chapter 4 or the approxi mate nethods described in Appendix B can be used in

the analysis of well
solutions to well

a

wher e

2’ '

As for a plan flow net,
Thus

the net.

problens. However, fornulas obtained from anal ytica
problems are the npbst common nethods of analysis.

Fl ow Nets. An exanple of a flownet for a sinple flow problemis
shown in figure 7-1. The

flow between flow lines is given by (Taylor 1948)

AQ = 2rkAh ;—b (7-1)
permeability (L/T)
total head | oss between equipotential lines (L)

distance fromwell (L)

di nension of elenment in Z direction (L)

di nension of element in r direction (L)

AQ and Ah nust be the sane for all elenents within
rb/2 is a constant. \en drawn in plan view (figure 7-1b)

the flow net consists of square elements as in the plane case described in

Chapter 4

(b/R) are proportiona

squar es.

b.

VWhen drawn in

Thus, graphica
is generally not practica
constant thickness and only the plan view of the net is required

profile (figure 7-1c) the elenments' aspect ratios

to the radial distance r and are therefore not

construction of flow nets for radial flow problens
except for cases where the water bearing has a

Appr oxi mate Sol utions. The nunerical and anal og net hods descri bed

in Appendi x C can be used for problens involving conplicated boundary condi -
tions. Electrical analog

cated well

probl ens cannot

nmet hods are especially advantageous as nost conpli -
be idealized in two dinensions.
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a. HORIZONTAL FLOW TO WELL

b. PLAN VIEW OF FLOWNET
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c. PROFILE VIEW OF FLOWNET

Figure 7-1. Flowout of sinple radial
flow problem (courtesy of John Wley

and Sons®%)

c. Analytical Formulas. The analysis of flow to a single well can
often be solved by analytical nethods. Also, the analysis of flow to multiple
wel | s and many probl ens invol ving conplicated boundary conditions can be
solved by superposition of solutions for single well problems. Analytical
solutions can be obtained for nonsteady flow problens.

7-3. Basic \Wll Equations for Steady State Flow  Steady flow conditions
exi st when the well flow rate and piezometric surface do not change with tine.
If the regional piezometric surface does not fluctuate, steady state condi-
tions are achieved by punping froma well at a constant rate for a long tine
period. Design of wells for seepage control are often based on conputations
assunming steady state conditions.
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a. Artesian Conditions. Wen significant flowto a well is confined to
a single saturated stratum the problem can be idealized as shown in fig-
ure 7-2a. An artesian condition exists when the height h of the piezonetric
surface |ies above the top of the water bearing unit b . If the properties of
the soil are constant in all directions fromthe well, the discharge Q from
the well nmust be equal to the flow through a cylinder defined by the radius
r, height b, and differential thickness dr . Thus from Darcy's |aw
(equation 3-3), the flow can be witten as

_ . dh
Q=k T 27mrb (7-2)
wher e
Q= constant discharge fromwell (L¥T)

k = coefficient of permeability -(L/T)

—— = hydraulic gradient along radius (L/L)
r = radius of cylinder (L)
B = thickness of aquifer (L)
Upon integrating equation 7-2, the relationship between r and h is found.

__Q
h 27kB

¢n r + constant (7-3)

The constant can be determ ned by specifying that at the radius r, , the
total head h is equal to a known head H, the total head that existed
before starting discharge fromthe well. That is,

h=Hforr = re (7-4)

Inserting equation 7-4 into equation 7-3, the constant termis found to be

Q inr

constant = H - T7KkB e
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Figure 7-2. Radial flow to horizontal aquifers (courtesy of

John Wley and Sons 164)
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By substituting the constant terminto equation 7-3 and conbining logarithmc
terms, the well equation for confined flow is obtained

H-h =3 gn -2 (7-5)

The distance r, is often defined as the radius beyond which the well has no

influence or radius of influence

b. Gavity Flow Conditions. Flow to a well under gravity (figure 7-2b)
differs fromthe confined flow problemin the inportant aspect that the height
B of the differential cylinder is equal to the variable h . Thus,
equation 7-2 nust be witten as

dh
dr

whi ch upon integration and substitution of boundary condition gives

2 _2Q
h™ = p ¢n r + constant (7-7)

The constant termcan be evaluated fromthe condition at the radius of influ-
ence r, as was done in equations 7-4 and 7-5. The constant termis given
by:

constant = H2 -8 n r
mk e

whi ch when substituted back into equation 7-7 gives the well equation for
gravity flow

Devel opnent of equation 7-6 is based on the Dupuit assunption (Chapter 4)
which limts the applicability of equation 7-7 to those cases where the slope
of the piezonetric surface is small (less than 5 percent). The error is
greatest in the vicinity of the well.
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¢c. Combined Artesian and Gavity Flow. Wien drawdown of the potentio-
metric surface becomes large near the well, conbined gravity and confined con-
ditions can occur (figure 7-2c).

d. Flow to Wll Goups (Method of Superposition). The piezonmetric sur-
face h caused by discharge froma group of wells can be determined by super-
imposing the solution for the individual wells given by either equation 7-3 or
7-6. For multiple wells, flow cannot be idealized by concentric cylinders and
the problem nust be stated in ternms of the plan coordinates x and vy
(figure 7-3b). By noting that for a well l|ocated at

(xi, yi)’ ri = (x - xi)2 + (y - yi)2 a general well equation can be witten as

@, = q; 4n (ri) + C

i (7-8)

i

wher e
¢i = potential required at point (x,y) to sustain a discharge Q from
a well at (x,, y,)
i i
= h; (confined flow
= hiz (unconfined or gravity flow)
gq; = intensity factor

Qi/lka) (confined flow)

Qi/(wk) (unconfined or gravity flow)
C = constant

The head distribution @(x,y) can be determned by summing the individual

¢i . As the sum of the constants G is a constant, the multiple well

equation can be witten as

n

B(x,y) =2 q; #n (r;) + constant (7-9)
i=1

where n is the nunber of wells. The constant is determned from a known
value of @ at a specified location. For exanple, the superposition formla
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for the wells shown in figure 7-3 would be

@(x,y) = h(x,y) = hi(x,y) + hz(x,y)

1 2 2
Z7kE [Ql n[x - )"+ (y -y ]
- Q2 Rn[x - x2)2 + (y - yz)z] + constant

At a distance r, fromboth wells h(x,y) = H. The constant termis found
to be

in r,
constant = == (Q1 - QZ)

Substituting the above equation into equation 7-9, the well fornula for two
wel I's becones

1'2 r2

1 1 2

H=-hGoy) = gmg (W P 3~ Qi3
e e

e. Hydr ol ogi ¢ Boundaries (Inage Well Method). Wen there are hydrol ogic
boundaries wthin the radius of influence of the well, equations 7-3 and 7-7
are no longer valid. Exanples of boundaries are

(1) A streamor river which can be idealized as a line source of equa
potenti al .

(2) Arock bluff line at the edge of an alluvial fill valley which can
be idealized as an inpervious boundary.

The superposition of solutions (equation 7-9) can be used to analyze the flow

near a boundary by introducing an artificial device called an image well. An
imge well is identical to the actual well and located symretrically on the
opposite side of the boundary. The superinposed effect of the real and inmge
well for an infinite well is identical to the influence of the real well and
boundary. If the real well is a punping well then a recharging inmage well is
used to represent boundaries such as rivers and a punping inmage well is used
to represent an inpervious barrier. For either case, the absolute val ue of
the flow Q for the inage well is equal to that of the real well. For
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exanple, the head distribution created by a discharging well in the vicinity of
ariver is identical to that created by the conbined influence of a recharge
and discharge well (see figure 7-4). The head distribution created by the

di scharge well in an infinite confined aquifer is given hy
h, = 2 4n r_, + constant (7-10a)
R 27kB R
and by the imge recharge well in the infinite aquifer
h. = =& &n r_ + constant (7-10b)
I 27kB I

By superposition, the head distribution for the true actual problemis

h = hR + hI
R
= 558 0 ;; + constant (7-112)
1
Note that at the river r, = rg and 4&n = = 0 Thus, constant = H, the
R

head at the river. Substituting the constant term into equation 7-11, the
formula for a single well near a recharge boundary is

r

-h=—9 gn 1t
H h T7kB in

=~

la]
=

To describe the head distribution for confined fl ow near an inpervious boundary
an imge discharge well is used (figure 7-4b), By the procedure used above, h
woul d be obtained as

b oo 0

TukE in TpTy + constant (7-12)
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Figure 7-4. Application of imge well nethod for analysis of flow
near boundaries (courtesy of Illinois State Water Survey287)
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The head at the inpervious boundary is unknown, thus additional information is
needed to determine the constant. Note that when rgy and r, are both equa

to the radius of influence that h = H . Thus
r Y
R I
h = oapg In iRl (7-13)
e

The image well nethod can also be applied to problems involving multiple
boundaries. For exanple, a conmon geologic situation involving nultiple
boundaries would be a discharge well punping froman alluvial terrace |ocated
between a river and rock bluff (figure 7-5). In this case, the image well for
the river would have a second image well with respect to the rock bluff, which
in turn would have an inmage with respect to the river and so on. A simlar
progression of inage wells would be needed for the inperneable barrier.
Eventually, the location of each added-inmage well extends beyond its radius of
influence r, fromthe punping well and has no practical influence in the

sol ution.

7-4.  Special Conditions. Although the sinple well formula (equation 7-8) is
often used to analyze flow problens, it describes a relatively idealized con-
dition that is found rarely in practice. It is generally desirable to con-
sider the effects of partial penetration of wells, sloping aquifer, and
stratification of water bearing units in the analysis.

a. Partially Penetrating Wells. In deriving equations 7-3 and 7-7 it
is assumed that the flow lines are horizontal at the entrance of the well
This assunption is valid only if the well conpletely penetrates the water
bearing strata. An approximate solution for flowto a well partially pene-
trating a confined aquifer was devel oped by Miskat (1946). The head can be
computed from

-¢C,8 (7-14)

wher e C1 and 02 are constants to be determined from boundary conditions

and Bis a function of the radius fromthe well (Warriner and Banks 1977).
The expression for B given by Miskat (1946) was based on sinplifying assunp-
tions. Duncan (1963) and Banks (1965) assessed its validity fromelectrica
anal ogy nodel studies and devel oped a nore accurate expression for B8 . The
alternative enpirically determned relationship for B8 devel oped by Duncan
(1963) is given in figure 7-6. The constants C, and C, are determni ned
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from the boundary conditions at the well and at the radius of influence as

C, =h +C.B

1 W 27w (7-15)
H - hw
€)= B -8
w e

wher e
h, = total head at well (L)
B

w
H

value of B at well radius r, (dinensionless)

total head at radius of influence ro (L)
Be = value of B at radius of influence r, (dimensionless)

The wel|l discharge can be deternmned by using an enpirically deternined shape
factor §

Q = K(H - hw)SB (7-16)

with

g = 2w Bbd Be

in zg Bw - Be

4B
wher e
84d = value of B at r = 4B
B = aquifer thickness

h. Flows to Goups of Partially Penetrating Wlls. An enpirical nethod
devel oped by Warriner and Banks (1977) provides a neans to nodify the rela-
tionship obtained by superinposing solutions for individual fully penetrating
wells for the effects of partial penetration. First, the head at each well is
computed from the assunption that they fully penetrate the aquifer:

N
r
= ..._1- _ii -
hy = ¢+ ooy E Q fn — (7-17)
i=1

7-14



EM 1110-2-1901

30 Sep 86
wher e
h; = head at well j (L)
c = constant of integration (L)
Q = discharge fromwell i (L¥T)
k = coefficient of permeability (L/T)
B = aquifer thickness (L)
a = constant (L)
r; = distance between well i and well j (L)
ro = radius of well j (L)
N = nunber of wells in group
In addition, the head at a point on the source boundary is given by:
N r
H=c+2—11TﬁZQizn§ (7-18)

where H is the head at the source and r;s is the distance between well i

and the source. The drawdown at each well is conputed from conbining
equations 7-17 and 7-18

N

ahj = H - hj = ZZszrs (7-19)
i= 13

with ryy =r

Equation 7-19 gives the drawdown for each well within a group of fully
penetrating wells. The values of Q required to cause the drawdown ah

3
can be determined by solving the system of N equations (7-19) for the N
unknowns Q . As for the single well, a shape factor can be defined as:
% 7-20
% " T (7-20)
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wher e Si is the shape factor for each well within a group. This shape
factor can be corrected to account for partial penetration by

' Tiw [Bad ~ Be
Si = - 5~ (7-21)
n s \Pw T e
4B

By replacing $i in equation 7-16 with $£ the flow fromthe well group is
given as

N
- ' -
Qpopag = Z kBS!ah, (7-22)
i=1

The computations required to evaluate equations 7-19 through 7-22 are straight-
forward though they are tinme consuming for large well groups. Warriner and
Banks (1977) provide a FORTRAN code to conpute di scharge and drawdowns for
partially penetrating well groups within an arbitrarily shaped source boundary.

c. Wlls in Sloping Aquifer. |If the regional potentiometric surface
has a significant slope, the effect of superinposing the initial regiona
gradient on the well drawdowns nust be considered. For exanple, when punping
from floodplain locations, the existing piezonetric gradient from upland areas

to the river my be as great as those caused by punping fromthe well. The
significant paranmeters for confined flowto a single well are shown in
figure 7-7. At a large distance fromthe well, the regional flow net would
not be affected. Al flowinto the well would be contained within the stream
lines separated by the dinension f . Thus by Darcy's law for one-dinensional
flow
dh1

Q=—k——d—XBf (7-23)

wher e

Q = discharge from well (L¥T)
k = perneability (L/T)

h, = total head (L) for regional flow alone
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Figure 7-7. Superposition of well drawdown on regional gradient
(courtesy of International Institute for Land Reclamation and

| npr ovenent *%%)
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The corresponding differential equation for the well would be

—2._941 )
dr 27kB r (7-24)
wher e
h2 = total head due to flow to well
r =\)x2 +y2
At a distance X, downgradient fromthe well, a groundwater divide devel ops
(cul mination point) at which
dh dh
2__1
dr ~ T dx (7-29)
In view of equations 7-23 and 7-24
—Q 1 _ 9 )
27kB Xe kBf (7-26)
or
f
Xe = 2n
By substitution of equation 7-26 into equation 7-23
dh,
Q= ZkaeB ix (7-27)
By integrating equations 7-24 and 7-27
-2 _
h1 2nkXeB X + ¢,
(7-28)
-2
h2 T7KE in r + <,y
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and superinposing the effects

- _ X Q 2 2
h(x,y) h1 + h2 2"kae + TkB ¢n (x° + y°) + constant (7-29)

The distance X, can be renmoved from the expression by substitution of
equation 7-27

hix,y) = ix + —Q in (x2 + yz) + constant (7-30)
47kB
dh1
where i = = the regional slope of the aquifer.

For conditions of unconfined flow, the regional gradient would be defined by a
par abol a

2 _ 29
h1 = %F X + constant

whi ch when conbined with the well equations for unconfined flow gives

By = - [%- +3 0 (x+ y2)] + constant (7-31)
: e

d. Layered Aquifers. Natural soils often occur in layers and a well
may penetrate units having different perneabilities. |If flowto the well is
horizontal, the sinple well equations can be used by assigning an average
val ue of perneability given by

N
- __m._m -
Kavg ~ m§ d (7-32)

wher e
K, = horizontal perneability of layer m
d,, = thickness of layer m

d = total thickness of layers
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Note that the perneability determned froma field punping test is an average

of all wunits penetrated by the punping well. A case where vertical flow can be
inportant is shown in figure 7-8. The discharging well is pumping from a
INITIAL PIEZEOMETRIC SURFACE ASSUMED TO
2 / COINCIDE WITH GROUNDWATER TABLE
s 7
= o — — — A
— —
— -—
o — ““——STEADY STATE PIEZEOMETRIC SURFACE
T T T s =" T e e —
e - = [/ T STRATA WITH
B - < e — — ———=c—F———> PERMEABILITY
q_c_r_._-________‘__i_ K’
ASSUMED FLOW T AQUIFER WITH
THROUGH CONFINING PERMCABILITY
@ STRATA K>>K’
SEM{I-CONFINED AQUIFER ‘
i

Figure 7-8. Flow to well wth significant vertical flow through confining
164
)

permeable unit overlain by a less perneable unit through which significant
vertical flow can occur. The flow to the well is given by

| ayer (courtesy of John Wley and Sons

B b=tk (E) (7-33)

wher e
H = original total head (L)

h = total head at distance r fromwell at steady state condition

(L)
Q = discharge rate (L%T)
L = vkBC (leakage factor) (L)
B = thickness of aquifer
C=B/Kk (L)

B = thickness of overlying |ow permeability unit (L)
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k' = permeability of overlying |ow pernmeability unit (L/T)
ko(%) = Hankel function (tabulated in table 7-1) (dinensionless)

7-5.  Nonsteady State Flow Nonsteady state flow nmay arise in several ways
When punping Is started, time is required to establish a virtually steady state
condition. Flow during this period nust be assumed to be nonsteady state. I|f
punping occurs intermttently, a steady state condition may not be established
Also, if large fluctuations occur at the source, potential steady state flow
conditions are not mmintained. The steady state condition can be viewed as the
end condition that is reached after punping for a long tine period. In the
design of a well system for seepage control, it is generally adequate to
consider only the steady state condition. However, the determnation of
coefficient of perneability fromtest data often requires anal ysis based on
nonsteady state condition. The duration of many well tests is too short to

Table 7-1. Values of K, r/L for Selected Values of r/L to
Eval uati on Equation 7_33(a)

_i_f f =107 f = 10" f =10
1.0 4.721 2.427 0. 421
2.0 4.028 1.753 0. 114
3.0 3.623 1.372 0. 035
4.0 3.336 1.114 0.011
5.0 3.114 0. 924 0. 004
6.0 2.933 0.777 0. 000
7.0 2.780 0. 660 0. 000
8.0 2. 647 0. 565 0. 000
9.0 2.531 0. 487 0. 000

Exanpl e: %:(15, f =101, K0.5 = 0.924

(a) Prepared from nore extensive tables presented by Kruseman and De Ridder
(1970).
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reliably establish the steady state condition. Also, in practice, hydrologic
boundaries may be present within the steady state radius of influence. In
either case the use of the steady state flow equations could lead to substan-

tial error in determning the permeability.

a. Nonsteady State Confined Flow. Theis (1935) devel oped the follow ng
relationship for nonsteady state flow in a confined aquifer (Davis and DeWei st

1966) :

_ _Q (7-34)
i h 4mkB W(w
wher e
Q = constant discharge rate (L%T)
k = perneability (L/T)
B = thickness of aquifer (L)
Wu) = function given in table 7-2
u2 U3 1.14
=-0.5772 - fnutu - g b g - T e
The paraneter u is given by
2
_rsS
Y = Zise (7-39)

wher e

r radius fromwell (L)

S storage coefficient (dinensionless)

t time fromstart of punping (T)

The storage coefficient S represents the amount of water renoved from stor-
age as a result of consolidation of the aquifer and expansion of water in
response to the decline in head. Physically S is given by

S = pgB(a + nR) (7-36)
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Sel ected Values of 1/u

to Evaluate Equation 7-34 (2

N
Cl—

10°

1010
101
1012
1013

1014

Example : u = 0.005 ,

=10 R =80
0. 000 0. 001 0. 146
0.219 0. 600 1.623
1.823 2. 468 3.817
4.034 4.726 6. 109
6. 332 7.024 8. 410
8. 633 9.326 10. 71
10. 94 11.63 13. 02
13. 24 13.93 15. 32
15. 54 16.23 17.62
17. 84 18. 54 19. 92
20. 15 20. 84 22.22
22. 45 23. 14 24.53
24.75 25. 44 26. 83
27.05 27.75 29.13
29. 36 30. 05 31. 44
31. 66 32.35 33. 74
% = 200 Wu) = 4.726

(a) Prepared by WES.
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where
p = mass density fluid (m L%
g = acceleration of gravity (L/T?
B = thickness of aquifer
a = bulk conpressibility of aquifer (LTY/M
n = porosity (dinensionless)

B = bulk conpressibility of fluid (LT¥M

The deternination of the aquifer properties kb and S from equation 7-34
requires a conplete drawdown versus time history for each observation
piezometer. The Theis nethod for data analysis is based on the logarithnmic
representation of equations 7-34 and 7-35

log (H - h) = log[W(u)] + log (4HEB)

2
log (%—) = log(u) + log (;%E)

From the equations above it is seen that if Qis constant that log(H - h)

varies with log(r%t) in the same way as log [Wu)] varies with log (u)
regardl ess of the units used. Therefore, it should be possible to superinpose
the data curve on the theoretical curve because the two curves are offset from
each other only by the constant terms log Q/4nkB and |log S/4kB . By deter-
mning the value of the offsets from the superinposed curves, kb and S can
be deternmined. The conputation consists of the followi ng steps

(1) Aplot is made of Wu) (log scale) versus u (log scale). This
plot is referred to as the type curve

(2) For each observation well, a plot is nade of drawdown H - h (Ilog

scal ) versus r2/t (log scale).

(3) Superinpose the test data over the type curve in such a way that
the drawdown data best fit the type curve (figure 7-9). The coordi nate axes
of the two curves should be kept parallel.

(4) Determine the values Wu) , u, H- h, and r?%t from an
arbitrarily chosen matching point on the two curves.
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Figure 7-9. Use of type curve for analysis of nonsteady state flow
(courtesy of John Wley and Sons 164)
(5) Conpute the value of kB from equation 7-34 using the matching
point value of H- h and Wu) . Conpute the value of S from equa-
tion 7-35 using the matching point values of u and r?t conbined with the
previously conputed value of kB . The above procedure is carried out for
each observation well. Ideally, the conputed values of kB and S should be

the same for all observation wells. Differences in the computed values my be

caused by geologic variations in the aquifer and hydrol ogic boundaries not
accounted for in the analysis.

b. Sinple Method for Coefficient Determination (Jacob's Method). Jacob
(1950) introduced a sinplification to the determnation of kB and S by
noting that for small values of u (small r and/or large t) equation 7-34
reduces to (Davis and DeWist 1966)
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H-h-= Z?gi <£n % - In l.78) : u < 0.0l (7-37)

Equation 7-37 can be witten in a form convenient for graphical solution by
substituting equation 7-35 and witing in terns of base 10 |ogarithns:

2.30Q 2.25T . 2.30Q

ZrkB 198 7. ‘Y im@ 108 t

r s

H-h-=

(7-38)

From equation 7-38 it is seen that the relationship between drawdown H - h
and time t for a particular observation piezoneter (r = constant) can be
represented as a straight line on a plot of H- h versus logt

(figure 7-10). The slope of the line is equal to %ﬁtﬂ Also, the tine,
t,, corresponding to H- h = o0 gives

2,25 %
rZS =1
whi ch can be used to determine S. An alternative analysis consists of plot-
ting H- h versus log r . The following relationship can be obtained by

rearranging the termin equation 7-38.

_ 2.30Q | 2.25kBt _ 2.30Q

H-h=7r3 g S ~ 2mkB

log r (7-39)

Equation 7-39 defines a straight line on a plot of H- h versus r

(figure 7-10b). The slope of the line is - .3__1}13—1(3)9 and can be used to
determine kb . The line intersects the H- h = o0 axis at r, . This
intercept can be used to determine S from
2.25kBt
= =1
r S
(o]

Note that r, represents the radius of influence for the well at time equals
t . Thus the radius of influence for the steady state condition r, is equal

to r, as t tends to infinity. This inplies that the radius of influence
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Figure 7-10. Use of Jacob approximation for nonsteady state flow

(courtesy of John Wley and Sons 164)
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expands indefinitely and cannot be defined. However, the val ue of Mo

selected has a relatively small influence on conputed drawdowns near the wel
and equation 7-39 can be used to determ ne reasonable values for r, .

C. Nonst eady Unconfined Flow with Vertical Gavity Drai nage (Del ayed
Yield). Initial response (generally after first few mnutes of punping) is
given by (Kruseman and DeRi dder 1970)

H-h = 7= W(u, , ©/B) (7-40)

wher e

2
A 4kBt

S, = storage coefficient for instantaneous release of water from
storage

Wu, , r/B) = Boulton well function (figure 7-11a)
r/iB = formation constant to be deternmined from piping test data

Later tine response is given by

- = -—Q— -
H-h=—0 W(uy » r/B) (7-41)
wher e
rZS
P
y  4kBt

S, = specific yield
Wuy r/B) = delayed yield well function

The application of equations 7-40 and 7-41 through use of a type-curve is
simlar to that of equation 7-34. The follow ng should also be noted

(1) Type curves for several values of r/B should be plotted. The

curve giving the best fit to the initial time-drawdown data is used to
estimate r/B.

7-28



wiu,)

10?

10!

100

EM 1110-2-1901

30 Sep 86
11U,
107! 100 10° 10? 102 104 108 108
’///B
URVE b 0
THE‘S M e
| —
/‘—‘==== 02
0.4 VE
n f
’_/rf —06 Y
1.0
1.5 S
N
/ 2.0 ] &‘“
2.5
r 1 /
- 3.0
1073, 102 1077 100 10} 102 10% 104 10%
UUV
a FAMILY OF BOULTON TYPE CURVES: W (U,, I/B) VERSUS 1/up, AND W (U,, r/b) VERSUS
1/Uy, FOR DIFFERENT VALUES OF r/B.
a. Famly of Boulton type curves: WU, , r/B) versus 1/u, and
WU/r/b) versus 1/y, for different values of r/B
12
10 .
8
6 - .
/ b. Boulton's delay index
curve
4 7/
L
3
0
0 05 1.0 15 20 25 30 35
/B
Figure 7-11. Type curves for Boulton's analysis of nonsteady unconfined
flowwith delayed yield (courtesy of International Institute for Land
Recl amation and | nprovenent %)
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(2) The tine-drawdown data overlay may be noved to obtain the best fit
for the latter time-drawdown data. Both initial tine and latter time fits
shoul d give the sane value of r/B and kB .

(3) Eventually, the effects of vertical gravity drainage becorme negli -
gible and the latter time curve nerges with the Theis curve. The tine-
coordinate where the two curves nerge is determined from Boulton's del ay-index
curve (figure 7-11b).

(4) A nunber of type-curve solutions to the problem of nonsteady uncon-
fined flow to wells have been devel oped (Fetter 1980). For exanple, Neuman
(1975) presented a type-curve nmethod sinmilar to Boulton's that accounts for
ani sotropy of the aquifer.

d. Nonsteady Confined Flow with Vertical Drainage Through Confining
Layer (Leaky Aquifer). The leaky aquifer equation for nonsteady flow is based
on the assunptions that flow to the well is horizontal and vertical flowis
restricted to seepage through the confining layer. These assunptions are
identical to those nade for the steady state case described by equation 7-33.
The drawdown is given by

H-h =3 W(u , %) (7-42)

wher e

r = radius fromwell (L)
S = storage coefficient (dinensionless)
k = perneability (L/T)
t =time fromstart of punmping (T)
L = | eakage factor (L) = -151—(-},32'—
B = thickness of aquifer (L)
B' = thickness of confining unit (L)
k' = perneability of confining unit (L/T)

Wu , r/L) = well function given in figure 7-12
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The application of the type curve nmethod for the leaky aquifer problemis sim-
lar to the application to the delayed yield problem The time-drawdown data
are matched to the standard type curve with the curve giving the best fit being
used to estimate /B .

e. Nonsteady Unconfined Flow with Little Vertical Drainage. If the
del ayed response conponent of the drawdown is small, the Theis equation
(equation 7-34) can be used to analyze the flow by inserting a "corrected"
drawdown into the flow equation. The corrected drawdown is given by

(h - H)2

(H-h)"=(H-h) - >

(7-43)

f. Nonsteady Flow with Hydrologic Boundaries. The method of super-
position presented for steady-state flow problenms (equation 7-9) is applicable
to nonsteady flow problens. Therefore, the inmage well nethod can be used to
investigate the effects of hydrologic boundaries. For exanple, the inmage well
analysis for a discharging well near a river (recharge boundary) is (Davis and
Dewi est 1966)

eh = 2 -
H-h-= 4 7kE [W(uR-) W(uI)] (7-44)
wher e
~ réS
YR T kBt
Y1 T kBt

rr = radius fromreal well (L)

r, = radius frominmage well (L)

k = coefficient of perneability (L/T)
S = storage coefficient (dinensionless)

B = aquifer thickness (L)

—
1

time fromstart of punping (T)
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Note, then, when the function Wu) can be replaced with a logarithmc
approxi mation, as in the Jacob's nmethod (equation 7-37), equation 7-44 can be

approxi mated as

2 2

r,S r.S r
-h = R n i = gn I
H=-h=708 70 ~ ™ 7ige = 7o @ T (7-45)
From equation 7-45 it is seen that as u beconmes small, flow becones virtually

steady state (conpare equation 7-45 with the steady state case, equation 7-11).
Thus the presence of a recharge boundary in an aquifer tends to shorten the
time needed to reach steady state (Davis and Dew est 1966).
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